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Abstract. In this paper we study the problem of estimating possi-
bly non-cuboid and possibly non-Manhattan room layout from a sin-
gle panorama. A major challenge is the unknown number of walls. We
firstly propose a pool of walls, then randomly select elements from the
pool and check the consensus between the predicted layout and pixel-
wise features. This RANSAC procedure is nested because we randomly
choose the number of walls before sampling wall indexes. We treat the
number of walls as a discrete latent random variable and improve its
likelihood according to the consensus. Within this nested RANSAC
framework, a scale alignment algorithm that simultaneously estimates
the relative height of ceilings and fuses the feature maps of ceiling and
floor, plays an important role. Many intuitive cases clearly demonstrate
how these two features are complementary. This method achieves top
results in the ECCV 2020 holistic 3D vision challenge.
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1 Introduction

With the increasing popularity of low-cost cleaning robots, room layout estima-
tion is no longer a toy scientific problem but an urgent industrial need. Currently,
most of these devices follow a ’mapping by crashing’ scheme, which is not in-
telligent. Room mapping with a single panorama (e.g., captured by iPhones)
is an intriguing alternative, yet existing methods are challenged by non-cuboid
and non-Manhattan rooms. By rendering enormous photo-realistic images with
layout ground truth, a recent dataset Structured3D [6] offers an opportunity to
address this challenge. Based upon deep representations learned on this dataset,
we develop a robust geometric fitting framework that estimates room layouts
with unknown number of walls. It enjoys the benefits of two novel techniques:

– Single-view reconstruction is intrinsically troubled by the scale ambiguity,
and the common practice is to assume a physical height for the camera



2 Hao Zhao and et al.

center. However, the relative height of ceilings remains unknown and assum-
ing it leads to the scale mismatch of ceiling/floor features. To this end, a
RANSAC-based scale alignment algorithm 1 that simultaneously estimates
the relative height of ceilings and fuses ceiling/floor features, is proposed.
Scale alignment clearly demonstrates how ceiling/floor features are comple-
mentary. Specifically speaking, floor features are usually polluted by occlud-
ing furniture while ceiling features are not. Fusing them leads a robust deep
feature map that can facilitate robust room layout estimation.

– With the fused feature map at hand, the task asks an algorithm to fit para-
metric room layouts to it. However, for non-cuboid rooms, the number of
walls can wildly vary within a large interval. Our idea is to resort to a nested
RANSAC procedure. Among a pool of wall proposals, we first randomly pick
the number of walls then randomly sample wall indexes, which accounts for
the adjective ’nested’. For each wall, its location and extent are decided by
an inner-loop optimization module. In each RANSAC iteration, the final lay-
out output is compared with the feature map and we seek for the one that
produces a maximum consensus. However, sampling wall indexes is itself
a combinatorial step and the nested algorithm structure makes the search
space even larger. Deviating from the random search nature of RANSAC, we
consider the number of walls as a latent variable, and improve its likelihood
according to the consensus. It turns the random fitting into an optimization
algorithm, effectively accelerates the search for a high-consensus output.

(a) Input Training Image (b) Full Regression Objective (c) Visible Regression Objective

(d) Input Testing Image (e) Feature Maps Trained with Full Objective Feature Maps Trained with Visible Objective

?

Fig. 1. (a) Input training image. (b) Full regression objective with occluded structure
lines. (c) Regression objective with only visible structure lines. (d) Input testing image.
(e) Deep feature maps produced by a network trained with full objectives. In the white
circle, we highlight how the network hallucinate occluded structure lines.

1 The scale alignment is also based on RANSAC and don’t confuse it with the nested
RANSAC fitting framework (see next bullet point).
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2 Method

Representation Learning. Following [3], we assume the camera height to
be 1.5 meters. As such, the room junctions on the image sphere can be back-
projected into 3D points. We uniformly sample 1000 3D points on each structure
line and project them onto the image sphere, so that the hard ground truth for
structure line regression is obtained. These hard ground truths are softened by
gaussian kernels as [4][1] suggest. Then an ordinary fully convolutional network
based upon a 105-layer dilated residual network backbone [2] is trained to regress
the confidence of three types of structure lines: wall-floor separating lines, wall-
ceiling separating lines, and wall-wall separating lines. A visualization of input-
objective pair is given in Fig 1-a and Fig 1-b. Since the network is trained with
objectives that preserve occluded structure lines 2, it can imagine the existence
of them during testing, as shown by Fig 1-d and Fig 1-e. We are investigating
the alternative option of training with only visible structure lines as Fig 1-c
demonstrates, yet by the time of writing, the network is still in training.

(a) Input Testing Image (b) Feature Maps

(c) BV Floor Feature (d) BV Ceiling Feature

@ RCH 1 meter

(e) Averaging (c) and (d) (f) BV Ceiling Feature

@ Aligned RCH

(g) Averaging (c) and (f)

Fig. 2. (a) Input testing image. (b) Network output. (c) Bird-view floor feature map by
assuming camera height at 1.5 meters. (d) Bird-view ceiling feature map by assuming
relative ceiling height (RCH) at 1 meter. (e) Averaging (c) and (d). (f) Bird-view ceiling
feature map by using aligned RCH. (g) Averaging (c) and (f).

Scale Alignment. We will refer to the feature map channel for wall-wall
separating lines by wall features, and other channels similarly. And we want to
use both ceiling and floor features for fitting as they are complementary. To
demonstrate this fact, we visualize the bird-view (BV) 3 features in Fig 2-c and
Fig 2-d. It is obvious that Fig 2-d reflects the room structure more faithfully
yet its scale mismatches the scale of Fig 2-c. Directly averaging them leads to
Fig 2-e and this is caused by the unknown relative ceiling height (RCH) 4. Our

2 ’Occluded’ by other structure lines instead of occluded by furniture.
3 We (ab)use the term ’bird-view’ for a top-down viewpoint.
4 RCH is the distance between the camera center and the ceiling.
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scale alignment algorithm plays the role of estimating RCH so that an aligned
BV ceiling feature map (Fig 2-f) is obtained and fused with the BV floor map
to get Fig 2-g. It is obvious that Fig 2-g is better than Fig 2-c, in many senses.
Specifically speaking, scale alignment is achieved with RANSAC. There are 1024
columns in a panorama and any of them can be used estimate an RCH. We
randomly select n = 1024× ratio samples from columns and use the variance of
n estimates as the consensus. If a RANSAC run produces the lowest variance,
the mean value of n estimates in that run is used as the final RCH prediction.
This scale alignment algorithm works well both qualitatively and quantitatively.

Fig. 3. Our method successful estimates challenging room layouts.

Nested RANSAC Fitting. To clarify, since the number of wall-wall sep-
arating lines and the number of walls are equal, we refer to one of these lines
as a wall, with a little abuse of terms. We firstly construct a pool of walls by
fitting a Gaussian mixture model (GMM) to the wall feature map. Every com-
ponent of the GMM corresponds to a wall and its mixing coefficient represents
its probability to be sampled. Let us assume there are m components and m
is determined by finding peaks in the wall feature map before GMM fitting. In
every RANSAC iteration, we first sample the wall number o from [4,m] by as-
suming an uniform distribution then sample o indexes from the pool. For each
wall, an inner loop decides the location and extent of this wall. On the fused
feature map (e.g., Fig 2-g), each wall corresponds to a fan-shaped region and
we seek a point on each radius segment so that the average score on a segment
connecting these two points are maximized. In this inner loop, the Manhattan
assumption can be enforced or not. Empirically, enforcing this constraint shrinks
the solution space and improves final quantitative measures. As such, in every
RANSAC run a final room layout prediction is obtained in the aforementioned
wall-wise manner. For each layout prediction, we render it into wire-frames and
check its consensus with three feature maps (e.g., Fig 1-e), which is similar to
the objective in [5]. Finally, the RANSAC run that gives the highest consensus is
considered the output. Denoting the feature maps as F , we update the likelihood
P (o|F ) so that it is no longer an uniform distribution as mentioned above. This
is done by normalizing consensus values obtained for different o. This practice
turns the random search into an optimization procedure and effectively acceler-
ates the search for a high-consensus layout. Some qualitative results of estimated
challenging room layouts are depicted in Fig 3.
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